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Abstract

Weighted integrals of random processes are approximated by the trape~6idal rule based on a
//

stratified and symmetrized random sample of size n. The weight functions "e assumed to be twice

continuously differentiable. We consider the rate of convergence to zero of the mean-square integral

approximation error as the sample size increases indefinitely. For randon processes which are twice

mean-square continuously differentiable it is shown tat the rate is X4, just as without a random

component (Haber 21)F For random processes which are a bit more than once, but not twice, mean-

square continuously differentiable the rate is shown to be nz. In both cases the asymptotic constant is

also determined.
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1. Introduction, Results, and Discussion

We consider the numerical approximation of the integral

I (f) =Jf(td (1.1)
0

of a function f over a finite interval. The simple Monte Carlo numerical approximation of I takes the

form

Jo)(f~i 1 f(Ui)
n.i-

where U, • , U, are independent random variables each with a uniform distribution over the interval

[0, 1]. Whenfis square integrable the mean-square error is given by

E[I(f) - (0)(f)]2 = _L (I(f 2 ) _ [ (f)] 2)
n

and the rate of n- 1 cannot be improved by imposing additional smoothness assumptions on f.

Haber [1] introduced a stratified sampling scheme whereby the interval [0, 11 is partitioned into n

subintervals An.i, i = 1, "'" ,n, of equal length and a point U,,i is chosen at random, i.e., uniformly

distributed, in An,i (the Uji's being independent for each n ). Then the stratified Monte Carlo

approximation of the integral I(f) is

=n Now

When f has a continuous derivative on [0, 1] the rate of quadratic-mean convergence is n 3 [1],

3 _L I

lim n3 E[I (fJ)-J()(f)]2= -2 f'(t) 2dt ,r
A-- 0

and this rate cannot be improved by imposing further smoothness requirements on f. In order to obtain a

faster rate of convergence when f has a continuous second derivative on [0, 1], Haber [21 adopted the

antithetic variates method and considered the following stratified and symmetrized scheme where along

with each U,,j its antithetic point U',.j (i.e., the symmetrically opposite point to U,,, in A,.j) is used. The ty Cods
and/or

stratified and symmetrized Monte Carlo approximation of the integral I1(f ) is jis :,plai
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12 (f Lf(Ui)+f('j)] (1.2)

If f has a continuous second derivative on [0,1] then the rate of convergence is n-5 and

im (2n) 5 E f ,( f L" (1.3)

In this paper we consider weighted integrals of random processes and establish the rate of

quadratic-mean convergence and the asymptotic constant for estimates of the form (1.2), allowing for

nonuniform partitions. Throughout this paper X = (X(t,w), 0 S t < 1 ) is a measurable second-order

random process with mean zero, E [X(t)] = 0, and covariance funcion R (ts) = E [X(t)X(s)J, defined on a

probability space (fl,F, P). We shall be concerned with the numerical approximation of the integral

I

I (X) = Jf (t)X (t) dt (1.4)
0

I

which exists as a sample path integral whenever f if (t) I R (t, t) dt < -. (We suppress the probability
0

variable o and write X(t) for X(t, w)). Integrals of the form (1.4) are common in detection and

estimation problems. Unlike (1.2) we allow the partition (A.ji !.1 of the interval [0, 1] to be

nonequally-spaced and we adopt "regular" partitions 0= t.,o < t,I < ... < t,,, = I defined by means of

continuous, strictly positive, probability density function h (t) on [0, 1] as follows:

f h(t)dt=- , i=O,1, ,n. (1.5)
0 n

We set

A .i -- ( t j , , t .i) , . A tn j i -tx i - t n~ i -I i 1 , " " .n . ( 1 .6 )

When h (t) = 1 we obtain a uniform partition of [0, 1]. It will be seen subsequently that the quality of the

approximation can be improved by tailoring the density h (t) to the covariance R (t, s) of the process X.

We assume that for each n > 1,
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i) U,,.i is uniformly distributed over A,, i = 1, n,

ii) U.. , U,. are independent,

iii) { U.,i } .j is independent of the process X.

We denote the antithetical point of U,.i by U',:

U'i = 2c., i - Uj. (1.7)

where c,i is the midpoint of A,

1
C . .i -- " Q .j i - + l n i ) . ( 1 .8 )

2

The stratified and symmetrized Monte Carlo approximation of the integral IO(X) of (1.4) is now defined

as

12,fX) = IfUf (U..iXU.,i) + f (U'.,i)X (U'.,i)I Ate i  (1.9)

and is in fact a trapezoidal rule. We first establish an expression for the quadratic-mean approximation

error under general conditions. This is useful for evaluating finite sample size performance and for

studying the asymptotic convergence properties.

I

THEOREM 1. If Jf 2(t)R(t,t)dt <** then foralln >1 wehave
0

E [I (IX)-_J1. JJX)12 = 1&A.,j f f2(OR (tt) +f(t)R (t, 2c,..i- )f (2c,.,i- 0] dt

- f f f(t)R(t, s)f(s)dtds. (1.10)
A,j A.,

We next show that when the function f has a continuous second derivative and the process X has

essentially one (but not two) quadratic-mean derivative which is mean-square continuous, then the rate of

convergence of the quadratic-mean integral approximation error is precisely n- 4 ( not n-5 !). Specifically

we make the following assumption.
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ASSUMPTION A.

i) f has a continuous second derivative on [0, I].

ii) The covariance function R (t, s) of the process X has continuous mixed derivatives R*'(t, s) of

order 2, 0:k+j<2, on the unit square [0, 1] x[0.1]; and of order 3, k+j=3, off its

diagonal with finite one-sided limits at the diagonal which are continuous along the diagonal.

iii) The function r(t) = R (t, t) has a continuous third derivative on [0,I].

The assumption of continuous mixed derivatives of R of order up to 2 on [0, 11 x [0, 1] is equivalent

to the assumption that the processes X has one mean-square continuous quadratic-mean derivative. The

additional assumption of differentiability of order 3 off the diagonal is weak and is always satisfied when,

for example, X is stationary, has rational spectral density, and exactly one quadratic-mean derivative. The

smoothness assumption on r (t) is very weak and is always satisfied in the stationary case. With

RkJ(t, t)= lim Rk-j(u,v), Rbj(t, t)= lim Rki (u,v), (1.11)

the one-sided limits of the derivatives of R above and below the diagonal, respectively, we set

i3 ,j(t) = R~j(t, t) - Rki(t, t) (1.12)

which exist under Assumption A for k + j = 3. We can now state one of our main results.

THEOREM 2. Under Assumption A we have

lim (2n)4 EI()X)-I(,(X)]2 = (  [3P 3,o(t)+7 2.1(t)] dt. (1.13)
,--"w 120 o h4(t)

It is seen that the rate of quadratic-mean convergence is precisely n " , provided 3133,o(t)+ 73 2. 1(t)

is not identically zero, and cannot be improved by additional smoothness of f. In case the third order

mixed derivatives of R are continuous at the diagonal, the asymptotic constant in (1.13) is zero and the

mean-square approximation error is o(n"4). The asymptotic constant in Theorem 2 depends on the

density function h of the regular partition. The optimal density h* which minimizes the asymptotic

constant in (1.13) is given by



-6-

h*(t) {I2(t)[13 3,0(t) + 72. (t)] 125 (1.14)f f 2(u)[3o(u) + 732,1 (u)]}2/5 du

0

for which (1.13) becomes

lim (2n )4 E[(fX)- .(fX)] 2 =(1.3P3,00) +V2.1(012/ dt

When the process X is weakly-stationary, R (t, s) = R (t - s), Assumption A simplifies to

ASSUMPTION A' (STATIONARY CASE).

i) f has a continuous second derivative on [0, 11.

ii) The covariance function R (t) has a continuous derivative of order 2 on the entire real line and

of order 3 away from the origin with finite one-sided limits R 0(+0).

With

013 AR(3)(0+) - R (3)(0 -  0 0, (1.15)

Theorem 2 becomes

COROLLARY 1. When the process X is stationary, under Assumption A', we have

3if 2(t)

lim (2n) 4 E[I(X)- i2(fX)]2 =- o h-t dt . (1.16)
R__"O 30D f h4 (t)

It is seen that if RO)(t) is discontinuous at the origin, the quadratic-mean convergence rate is

precisely n-4; if R3)(t) is continuous at the origin then 3 = 0 and the mean-square approximation error

is o (n-4). The asymptotically optimal density is now given by

h*(t)= I If(t) 121

fif (u)1 215 du
0

for which (1.16) becomes

lir(2n)4 E[I(/X)- (fX)1 2 = -30 If(t) 1211 dt .
30 o
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It is clear from Theorem 2 that for the approximation of weighted integrals of random processes we

obtain a quadratic-mean convergence rate of n"4 when the weight has two continuous derivatives and the

process has essentially one but not quite two mean-square continuous quadratic-mean derivatives. We

now show that under an additional smoothness condition on the covariance function R (t, s) of the process

X, we can obtain a rate of n-5 for weighted integrals of random processes. To this end we set

ASSUMPTION B.

i) f has a continuous second derivative on [0, 1].

ii) The covariance function R (t, s) of the process X has continuous mixed derivatives R "'j(t, s) of

order 4, 0< k +j < 4, on the unit square [0, l] x [0, 1].

Part (ii) of Assumption B is equivalent to the assumption that the process X has two mean-square

continuous quadratic-mean derivatives. We then have our second principal result.

THEOREM 3. Under Assumption B we have

lim (2n)s E[(IX)_1 2 .(fX)] 2  A 2(t) dt (1.17)
a-_" 45 O

where

A 2 (t) - R (t, t)ff"(t)]2 + 4 R '°(t, t)f'()f"(t)

+ 4[IR2,O(t, t)f (t)f"Q) + R I.I(t, t)(fI(t))2] + 4 R 2" (t, t)f (t)f'(t) + R 2"2 (t, t)f 2(t)

= E[[f(t)X(t)J"}2  (1.18)

and differentiation of the process X is meant in quadratic-mean.

Since A 2() cannot be identically zero, the rate of quadratic-mean convergence is precisely n-5 and

cannot be improved by additional smoothness of f or R. As in the discussion following Theorem 2, we

can select the partitioning density h so as to minimize the asymptotic constant in Theorem 3. We obtain

h*(t)= JA(t)1
216

f IA(u)1 216 du
0
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for which (1.17) becomes

lim(2n)' E[I(jX) -1,(X)]2 - IA(t)12' 6

We now specialize Theorem 3 to the stationary case. Here Assumption B simplies to the following.

ASSUMPION B' (STATIONARY CASE).

i) f has a continuous second derivative on [0, 11.

ii) The covariance function R (t) has a continuous derivative of order 4.

We then have

COROLLARY 2. When the process X is stationary, under Assumption B', we have

lim (2n)5 E I(JX)-I_,U(X)1 2 - 2 dt (1.19)

45 0 

where

A 2(t) -R(O)Lf"(t) 2 + 2[ -R"(0)] (2L"(t)]2 -f (t)f"(t)} + R(4)(0)f 2(t)

= E {(f (t)X(t)"1 2 . (1.20)

The asymptotically optimal partitioning density is now given by

h ( t ) = [ ' 2 ( t ) 
1  6

f [A 2 u)I)'"du
0

In the stratified and symmetrized Monte Carlo approximation considered in this paper, the randomly

chosen points { U.i !., are uniformly distributed within each subinterval of the regular partition. On the

other hand one may wish to retain the property of the crude Monte Carlo whereby the randomly chosen

points { U,,j i,, are uniformly distributed over the domain of integration [0, 1 ]. Such an approach leads

to trapezoidal Monte Carlo integration which was considered in Yakowitz et al. [41 for integration of

(deterministic) functions f and in Masry and Cambanis [3] for weighted integrals of random processes. It
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may be of interest to provide a comparison of the performance of these two integral approximation

schemes (both of which use trapezoidal rules) under identical assumptions on the integrands. For the

trapezoidal Monte Carlo approximation we use independent random variables U1, " ", U. uniformly

distributed on [0, 11, independent of X, and we let 8,,o AO < I.j <TA.2 < < r,,., < A T,,+, be

the corresponding ordered sample. The integral (1.4) is approximated by

12+)()= 1- i[f (T X(.+ f(j0(j0I(nil- .' (1.21)

For simplicity we state below the convergence properties of 1(",+T) in the stationary case only. Under

Assumption A' we have [31
I

1 32lit n4 E [I (fX) - +T) (fX)] 2 - - P3 f 2(t)d t + 4E[(fX)'(1) - (fX),(O)] 2  C trp

In order to compare this to Corollary 1, we assume even sample size N so that

lim N 4 E[(JX) -ltp)(fX)] =C

whereas by Corollary I with h (t) = 1 we have

IimN 4 E[ (gX)-_IN(X)] 2 tC
N-,- 1L;_ 0

It is clear that, while the symmetric-stratified and the trapezoidal Monte Carlo approximations have

identical rates of quadratic-mean convergence, their corresponding asymptotic constants satisfy

(C'P / C,,)"4 > (45/2)"4= 2.18 and thus, asymptotically, for the same accuracy measured in terms of

quadratic-mean error, more than twice as many samples are required for the trapezoidal scheme. This

discrepancy also appears in the example below where the finite sample size performance is evaluated.

Finally, it may be interest to examine the performance of the stratified-symmetrized Monte Carlo

integral approximation when the function f and the process X satisfy weaker smoothness conditions than

those stated earlier. For integrals of random process 1(X) we assume for simplicity that f= I and X is

wide-sense stationary process. The following table of quadratic-mean convergence rates complements

Theorems 2 and 3. The additional rates displayed in the table can be established in the manner of the
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proofs of Theorems 2 and 3.

12__f) 1 2 .(X)

Smoothness Rate Smoothness Rate

f continuous o(n-1) R continuous o(n-1)

R' continuous o (n- 2)

f' continuous o (n- 3) R" continuous o (n- 3 )

R" continuous & n -4

R ()(O±) finite, #0

f" continuous n-5  R(4) continuous n-5

Recall that a wide-sense stationary process X has k mean-square continuous quadratic-mean

derivatives if and only if R (2) is continuous. It is then seen from the table that when the nonrandom

function f or the stationary process X have 0, 1, or 2 derivatives, usual or quadratic-mean respectively,

the rates of convergence of the mean-square approximation error of their integrals are identical. For the

approximation 12,(/X) of I(fX) with mixed smoothness conditions on f and on X, it can be shown that the

slower rate prevails. Thus, frr example, if f' is continuous and R(4) is continuous, the rate of

convergence of the mean-square approximation is o (n-3).

Thus the ultimate rate of convergence, n -5 , of the symmetric-stratified Monte Carlo approximation

of 1(/X) is achieved when the nonrandom function f has two continuous derivatives and the random

process X has two mean-square continuous quadratic-mean derivatives; i.e. when the usual smoothness of

f and the quadratic-mean smoothness of X are comparable. This is in contrast with the trapezoidal Monte

Carlo approximation of ! (X) whose ultimate rate, n-4, is achieved when the nonrandom function f has

two continuous derivatives and the random process X has one mean-square continuous quadratic-mean

derivative and continuous mixed partial derivatives of R of order 3 off the diagonal, but not two

quadratic-mean derivatives; i.e., when the quadratic-mean smoothness of X is less than the usual

smoothness of f
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EXAMPLE. We illustrate via an example the finite sample size performance of the stratified-

symmetrized Monte Carlo approximation and compare it to that of the trapezoidal Monte Carlo

approximation. We consider a stationary process X with mean zero and covariance function

R(t) = (1 +yI t ) e-7 1II

where y > 0. Note that R (0) = I and the process has exactly one quadratic mean derivative. Moreover,

R 3)(t) is discontinuous at the origin so that Corollary 1 is applicable and the rate of mean-square error

convergence of 12,.(/X) is n- 4 . For simplicity we take f Q) a 1 so that the integral to be estimated is

I
I (X) = J X (t) dt. We choose an equally-spaced partition, h (t) a 1, for which the approximation (1.9)

0

becomes

12.(x)-= , (u,..i) +xCU',. .
1n, tL}

The variance o-2 of 1(X) is given by

a "2 = E [ ( X ) 12 _ ffR(t-s)dtd$=- 2 .1+ 1+1 e - 7
oo 71

From Theorem 1 we find after some algebra, that the mean-square error is given by

_ 12x) ,(X)1 2  + n + -

The asymptotic constant C , is given by

120

Let N = 2n =2, 4, ... , be the (true) sample size with corresponding mean-square error

mse (N) = E [I (X) - IN(X)] 2. The fractional mean-square error is then given by mse (N)/a 2. In order to

select appropriate values of y for numerical display of the finite sample size performance. the behavior of

the fractional error mse(2)/a 2 ( based on 2 samples) as a function of y was investigated. Table I below

lists the results along with the value of the asymptotic constant.
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7 mse(2)/a 2 UI&

.2 6.055 x0 5  6.66 xl0 -5

1 5.456 x10- 3  8.33 xl0 -3

3 8.02 xI0 - 2  .225

5 .2321 1.04

7 .4293 2.858

10 .7646 8.333

15 1.361 28.125

20 1.973 66.666

We select two values ry 5 and y= 10 corresponding to moderate values of mse(2)/a 2 .

In Figure 1 the fractional mean-square error mse (N)/a 2 is plotted as a function of the sample size

N = 2, 4, 6, - • • , 30 for y = 5 and y = 10. It is seen that for the smaller value of y = 5, the fractional error

is considerably smaller for each sample size N. This can be explained by the less rapid decay of R (t) and

hence the larger correlation between consecutive samples so that IN(X) provides a better estimate of I (X)

in this case. The closeness of the fractional mean-square error to its asymptotic value,

C l' 2

mse(N)l o 2  N4 '

is displayed in Figure 2 for parameter y = 5. Note that the asymptotic value overestimates the true error

for all sample sizes N in the plotted range. Naturally, the discrepancy between the two values diminishes

as N increases.

It may be of interest to compare the above finite sample size performance to that of the trapezoidal

Monte Carlo approximation (1.21). For the latter approximation the expression for the mean-square error

for a finite sample size is given in [3, Eq. (1.13)]. In Figure 3, the fractional mean-square errors

mse(N)1 2 are plotted as functions of the sample size N = 2, 4, . • • , 30 for y = 5. It is seen that the

symmetric-stratified approximation outperforms the trapezoidal Monte Carlo approximation by a wide

margin for all sample sizes N in the plotted range. For 1% fractional mean-square error 6 samples are

required for the symmetric-stratified approximation but 12 samples for the trapezoidal Monte Carlo

approximation; for.1% fractional mean-square error, the corresponding numbers of samples are 12 and



-13-

24 respectively. Asymptotically, for large N, we can compare instead the asymptotic constants

C,,=(l+6y+(y-l)e-Y}9/2, C,.=y3/120

and it is seen that for all y > 0,

CUWCw > 360

so that, for the same mean-square error, the trapezoidal Monte Carlo approximation requires a sample

size N greater than that of the symmetric-stratified Monte Carlo approximation by a factor of at least

(360)14 = 4.35. When y = 5, [CUV / C.]vh = (372.32)v = 4.393.

2. Derivations

In order to simplify the writing throughout this section we will drop the subscript n from

AnJi, taj , Atn, i , c.i, Un~i.

PROOF OF THEOREM 1. The expectation in E[I(fX)-l,(fX)] 2 is with respect to both the

random samples [Ui)}i and the random process {X(t), 0 5 t < 1) which are mutually independent. We

first verify that both I(JX) and IA(JX) have finite second moments. To simplify the notation we put

Y (t) = f (t)X (t) and M (t, s) = f (t) R (t, s)f (s). It follows that

1 11 1

E I I1(Y)1 2 ) <E (JE{ Y(t)Idtl 2 =JEIyt)y(S) } Edtds :YY(f M (t, t)dt )2 <
0 00 0

where we used E2{ I Y(t)Y(s)I) E{ y2(t)) E (y 2 (s)} =M(t, t)M(s, s). The more restrictive condition

I

fM (t, t) dt < c is needed for the finiteness of the second moment of 12,(Y). Indeed, taking first the
0

expectation with respect to the random samples, we find for each i,

These inequalities justify the interchanging of integrals and expectations below. In view of (I.1)

and (1.9) the integral approximation error can be written as
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1(y) -12(Y)= Y(t)dt- 2ti[Y(Ui)+ Y(2ci- A e.

The bias of the ith error term is

E(ei) = E[E(ei IX)I- E{f Y(t)dt--f [Y (t) +Y(2ci -tdt} E(} =0.

Thus 12. is an unbiased estimator of I:

E {I(Y) - I.(Y)) = 0.

Since given the random process X, the error terms {ei)*4.. are independent with zero mean we have for

i j,

E{eiej} =E{E(eiej I X)) =E{E(eI X)E(ej I X)} =E(0)=0.

It ollows that

mse2. AE[I (Y) -12. (Y)]2 =E eiy= E~e, ej) = E~ed}
i j-

Performing first the expectation with respect to the samples we find

Ee 2} =E { Y(t)dt - 1 Atj[Y(U) + Y(2cj - U)}

= E fY.(t)dt -At f Y(t)dt [Y(Ui) + Y(2ci - Ui)] + At2[Y(Ui) + Y(2ci - Uj)]2

= E fY (t)dt f Y Y(t)dt [Y(s) + Y(2ci - s)]ds + I Ati f [(t) + Y(2ci _ t)] 2 dt
{[A ] I Ai A 4 A 

- f f M (t, s) dids - f j [M (t, s)+ M (t 2ci - s)] dtds
A, Ai A, A

+ - At. [M(t, t) + 2M (t, 2 ci - t) + M(2ci - t, 2ci - t) Idt
4 1



-15-

2 A AA

and (1.10) follows by summation. 0

PROOF OF THEOREM 2. We first Taylor-expand R (t,s) for (t, s) off the diagonal of AiXAi (i.e.,

t * s) about the center (ci, ci). From Assumption A. (ii) we have

R (t, s) = R (ci, ci) + (t - ci) R 1 '0(ci ,ci) + (s - ci) R 0-1 (ci, ci)

+ - _ c,)2 R2-°(ci, ci) + -(S - c,) 2 R 0 2 (c, c,) + (t -C,)(s - c5) R 1.1 (ci, ci)
2 2
1 130

+-(t-ci)3 RI(int)+-I(t _c) 2(S-ci)R2.1( int) (2.1)
6 2

11RO3

+ -(t -ci)ts -c) 2 R 1,2( int ) + -(s -c) 3 R0 3(int)
2 6

where int is a point in the open line segment determined by (t, s) and (ci, ci) (depending of course on

both). We also Taylor-expand the function r(t) = R (t, t) about ci. In view of Assumption A.(ii) - (iii)

we have r'(t) =2 R '(t, t), r"(t) = 2[R2-°(t, t) + R' (t, t)] and thus

R (t, t) = R(ci, ci) +(t -ci)2 Rl'°(ci, ci) +(t -ci) 2 [R2,°(ci, ci) +R 1,1(ci, ci)]

1 r"

+-(t -cC) 3 "(int) (2.2)
6

where int is a point in between t and ci (depending on both). Substituting (2.1) and (2.2) into (1.10) and

regrouping terms using the symmetry of R (t, s) we obtain

MSE. = ElI (fX) - 12,,(fX)] 2  (2.3)

= R(ci, cL5/-t ftf2 + y.&t JfQ) f (2ci _ t) dt _ 41f)2 A ~EO-O (2.3.1)

+ 1R0'(ci, C) f -(t-c)f2 (t)dt-2(ff) f (t-ci)f(t)dt AE'-O (2.3.2)

N Ai A, AI

12 (t - ( + Ij J (t - ci) 2f (t)f (2cI - 0) dt



-16-

-(Jf) f(t-ci)2f(t)dt} E'O (2.3.3)

+! "(C" C'){ 7  A ,2 A, d

- (f (t -C& (t) dt)2  E.A--Ef'f (2.3.4)

+ &ti f (t - ci)3f 2 (t)rl"( int )d AEr (2.3.5)

121
+ f - -f, (t- c) 3 R3"0 (u,, 2ci-ut)+ (ci -t)3 R0'3(ut,2ci - u,)

S j[ 6 6

+ -L(t - ci) 2(ci - t)R2' 1 (u, 2ci - ut) + -(t - ciXci - t)2 R 1.2(u,, 2c, - ut) ] dt
2 2

- Jff(t)f(s)[ 1 (t-ci)3R3.°(int)+-(s-ci)3R.3(int) (2.3.6)
AA 6 6
ITS

+ -L- (t -- Ci)2($ - R21int) +"-I(t--Ci)($ i -- Ci) 2 R 1,2( int ) ]dtds A ~
2 2 J

In (2.3.5), int denotes a point in Ai depending on t. In the first term of (2.3.6), R (t, 2ci - t) is expanded

about R(ci ci) and thus the point ut is in between t and ci, and in the second term the intermediate point

" int " is in between (t, s) and (ci, ci) and we excluded the diagonal t = s from the integration because it

has zero Lebesgue measure.

We now use the Taylor expansion off (t) about ci, which in view of Assumption A. (i) has the form

1

f (t) =-f(ci) + (t - ci)f'(ci) + -L(t - ci)2f"[d(t, ci)1 (2.4)
2

and the intermediate point d depends on t and ci.

Terms involving R(ci, cL) (E2'0 ). From (2.4) we find

31

J1=Atjf(c)+At3 - f"(inti), (2.5)
A, 24

Jf2 = Ati f 2(ci) + At (f(ci)f"( int2 ) + Lf'(c,)] 2)
12
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+ Ad - f(c)f"( int 4 ) -f( int 3)] + Ai --L- [f,( int 2)] 2  (2.6)

f f (t)f (2c - t) dt= AtJ 2 (ci) + At! - [f (ci)f"( int1) - [f'(ci)] 2 }

4 12

+ AO -LJ .c~jftJ "I 3) -fJ ( 1nt4)u&.M - f3 ( ints)f"(2ci - int5 ), (2.7)

and substituting into (2.3.1) we obtain

En=lR (ci, ci)At 6  l [f"( int2)]2 + f"( int5 )f"(2ci - int 5) - 1 f"(it 1)12}. (2.8)
i- 6 10 10

Using

1 f h(t)dt =h( int )Ati (2.9)
n A

it follows from (2.8) by Riemann integrability that as n -- ,

(2n)SE°'° "-' ; f R (t, t)[f"(t 2

4!o hS(t)

Terms involving R 1'°(ci, c,) (E,'0 ). From (2.4) we find

f (t - ci)f (t) dt = Ad -L f'(c) + At? (int 4) -f '(int3)], (2.11)
A, ' 12 12

1 1

J(t-c)f 2 (t)dt=At? -L f (ci)f'(ci) + At4 - f (c)If"( int4) -f"( int3),
A4 6 '64

+ At I f'(ci)f"( int 6) + Ato 1 f"( mt,)12 _ (f"( int 3)12) (2.12)
80 ' 1536

and substituting them, along with (2.5), into (2.3.2) we obtain

E = -0 R" 0 (ci, c1)Ato -L f(Ci)L2f"( int 6) -f"( int1)]+o(n

where the term o(n-7 ) is uniform in i since by (2.9), Ai S (en)- for some e > 0 as h is bounded away

from zero. It then follows from (2.9) that as n - o,
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(2n)5 E.'° - 8L R 1'-(t, t)f'(t)f"(t) dt. (2.13)
45 hl(t)

Terms involving R2"0c, c,) (E O). From (2.4) we find

J(t-c 1 )2f(t)dt= Ad -f(ci)+ At -L-(int6), (2.14)
A12 '160

f(t - ci) 2 f 2Q)dt = A4~ -i--f 2 (ci) + At?!~ LLf'(ci)]2 +f (c1 )f"( int6))
A1  12 '80

+ At§ -Lf'(cj)Lf"(int 1 )-f"(intjo]+ At7 79 If(intg)]2 , (2.15)
'384 '1792

f (t - ci)2f (t)f (2ci - t) dt = At 3 -L f2 (c) + Mt -L (f (c)f"( int6) -

4 12 '80

+ At 1 -f1(c,)Ef"( int10) -f"( int11)] + At7 f"( int12)f"(2ci - int 12), (2.16)
' 384 1792

and substituting into (2.3.3) along with (2.5) we obtain

E.20 - R'(ci, ci) fAto ...L f (c*)[ f"( int 6) - Iffl( int 1)] + o(
i-I32 5

where the o(n "-) term is uniform in i. It follows from (2.9) that as n -= ,

(2n)' E2'0  4 - R 2'0 (t, t)f(t)f"(t) dt (2.17)
45 t

Terms involving R1,'(ci, ci) (E .1 ). Substituting (2.11), (2.15) and (2.16) into (2.3.4) we obtain

E'- = Rl',(ci, ci) fAti 0 [f I(C,) ]2 +°o(n -6)}

i-i L 180

where the o (n - 6 ) term is uniform in i, and thus by (2.9), as n - ,

_+ II I(t' t)[/'(t)12 dr.(t8

(2n) 5 E." - 8 4-_-i R S, 5(t) (2.18)
45 i

Terms involving P"' (E' ). Substituting (2.4) into (2.35) we obtain
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where the o(n - 5) term is uniform in i, and using (2.9) we find as n -- a,

(2n)4 E -+ ["(t)t-) "(t)] dt = 0. (2.19)(2n)4 E, 1--64 f o4(t)

Terms involving R3'°,R 2 1 (El). When we substitute (2.4) into (2.3.6) the dominant term

corresponds to f (ci). We thus have

E= "[f2(ci) + o(l)] x (2.20)
i-I

13 1 RO.3 (u, 2Ci- u,)

- R 2. 1 (ut, 2ci - 14) + R 1.2 (u,, 2ci - u,)] dt (2.20.1)

(I [ _ (-c,) 3 R3 0 (int)+ -(s- C)3 R0 (int

1 R21( 1R. (

+ "(t - C2)2 (S - ci) R(int ) + I (t - c)(S - c )2 R- int )] dt ds (2.20.2)
2 2J

where o(1) is uniform in i. In view of the possible discontinuity of the third order mixed partial

derivatives of R at the diagonal (Assumption A. (ii)), we proceed as follows. For the first term (2.20.1) in

(2.20), we split the integral f into the two parts f + j and then apply the mean value theorem to each
Ad '4-1 C,

part, since (t - c,) 3 has constant sign over each half-interval (ti-1, ci), (ci, ti), to obtain, e.g.,

C6 

1

f (t - c,) 3 R3,°(ut, 2ci - u,)d = R 3'0 (a1 ) j (t - c) 3 dt + R3.0 (b1) J (t - C,)3 dt
Ad 4., C,

= ±I .At[_R3,O(a,)+R3.o(b 1) ]64 A

where aI and bI denote intermediate points in Ai xA, above and below its diagonal respectively. (For

R (, s), above the diagonal means t < s, and below the diagonal means t > s). For the second term

(2.20.2) of (2.20) we split each of the four double integrals f f into four parts corresponding to the
AXA,
I*s
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regions above and below the diagonal where the terms (t - ci)3, (s - ci) 3 , (t - Ci) 2 (S _ ci), (t - c)(S -Ci) 2

have constant sign, and then apply the mean value theorem. For instance we get

fJ (t-ci)3 R3"°(int)dtds={ fJ + JJ + JJ + JJ I( t -c i)3 R 3'O(int)dtds
ASA. I <3 < <I 3<t < < .<3 <t Itj<.J <t <Cj

4-_l <t <C' t t

S - R3(a)A + R " (a 6)A ti  +R 3 '(bS)A 9-- R 3 "(b 6 )At51i'O

64 640 640 640j

=A4 -L - 9R3.0(as) + R3'°(a 6) + 9R3'O(bs) - R3'°(b 6)

where ak and bk denote intermediate points above and below the diagonal in Ai x Ai respectively.

Proceeding likewise for the remaining terms we obtain

E ! [f 2(ci)+o(1)]A x
i-I

x{ [-- -3. (a,)-R3.(b 1)+ IR03(a2) R 0.3(b2)
26 333 3

+ R2 (a 3 ) - R2 (b 3 ) - R 1 .2 (a 4 ) + R 1.2(b4) ]

6 [-9R3,0(as) + R3 O(a6) + 9R3.0 (b5 ) R3.O(b6)]6-640

64 [- R0.3(a,) + 9R 0.3(a,) + R0'3 (b7) - 9 R0.3(b)]6.640

2L- [-3R2.1(ag)+7R2.1(a1o)+3R2.1(bg)-7R2.1(b1o)j2.960

l [- 7R.2 (a,)+3R1.(a12)+7R12(b,,)-3R12(b2)]}.2"960

Using (2.9) and (1.12) we obtain as n -- oa,

(2n 4E3..-+ 16J f 4(- { f-- -LPo3,00)+ iL.3(t)+P2 (t) -.Pf1,20)
0 h 4(t) L256 3 o 3)
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+ 8 3,()-f 3 (t) W 2"9041 (t)-01,2(t)].
6-640 L'0 2-960 L'JJ

By (1.11) we have by the symmetry of R that Riak(t, t)=R J(t, t) and thus Pjk(t) -fkj(t) for

j+k =3. Hence

(2n4 E "- -120 o h 4 (t) I

The final result follows from the expression (2.3) of the mean square error and from the asymptotics of its

terms derived in (2.10), (2.13), (2.17), (2.18), (2.19) and (2.21). 0

PROOF OF COROLLARY 1. In the weakly stationary case Part (ii), of Assumption A reduces to

Part (ii) of Assumption A', while Part (iii) is automatically satisfied. Also in this case / 3,0(t) = -.83 and

02,1() = P3, and thus Corollary I follows from Theorem 2. 03

PROOF OF THEOREM 3. The proof proceeds along lines similar to the proof of Theorem 2.

Since by Assumption B .(ii), R (t, s) has continuous mixed partial derivatives of order four, its Taylor

expansion (2. 1) has the point (ci, ci) in place of the intermediate point int in the terms of order three and

in addition it has the following fourth order terms:

I (t - c,)4 R 4'0( int ) + -l(t - c)3 (s - ci)R 3"1( int ) + -L (t - c)2 (s _ ci)2R2"2 ( int)
246 4

+ _(t - ci)(s - c,) 3 R 1.3( int ) + -(s - C,)4 R 0 4 ( int (2.1)'
6 24

where int is again a point in the open line segment determined by (t, s) and (ci ci) and depends on (t, s).

Also for the Taylor expansion of r (t) = R (t, t) in (2.2) we now have

r)(t)=2[R3,0 (t, t)+3R2'I(t, t)J , r(4)(t)=2[R4'0 (t, t) +4R31 (t, t)+ 3R 2 2(t, t)] (2.22)

and the third order term in (2.2) is modified as follows and a fourth order term is added:

l -(t -C,)3 r)(c.) + - 4 (t - c1)4 r(4)(vt) (2.2)'
6 ' 24

where v, is a point in between t and c8, depending on t. When (2.1) - (2.1)' and (2.2) - (2.2)' are now

substituted into (. 1), the resulting expression for the mean-square error is given by
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MSE, =Oo2o + E,.o 0 + E20+E1 + (E)' + (E3) + 4

where the first four terms on the right side ae given by (2.3.1) - (2.3.4), (ER)' and (E3)' are modifications

of (2.3.5) and (2.3.6) respectively and E. is a new term. We have

(Ery)= i - t (3)(Ci) J(t - C) 3 f 2 (t)dt + "-L (t _ C,)4 f 4)(VI)dt(

iml 12 Atr 4 AJ2tr(..)

the term (E3)' modifies E3 of (2.3.6) and simplies to

( R3.0 (C,, C) -1 jj [(t,- c,)3 +(S _ C,)3 ]f (t)f(S) dts
i=1 44

H 1

- R2 1 (ci, ci) I j J [(t-c,)2(s-c)+(t-c)(s -c) 2 ]f (t)f (s)dtds , (2.3.6)'

because the term in (2.3.6) involving j is identically zero once RJ'k(ut, 2ci - u,) is replaced by
A

RJ'k(ci, ci). The additional fourth order term E4 is given by

1 1

E4 - Ati Jf(t)f(2ci -t)(t -c 1)
4 [- R4 .0 -I R + RZ - 1 R + - R°'4 (u,, 2ci - u,)dt

i1 24 6 4 6 24

1 1,2
jf (t)f (S)[4 (t-Ci)4 R 4'°(int )+ -L(t-ci)3( - ci)R 3.1( int ) + (t-_c,)2(s -ci)2 R (int)

i-I Aj Aj 4

+ -(t - c,)(s - c,)3 R 1.3( int ) + -4(S - c,)4 R0.4( int )I dt ds (2.3.7)
6 24

where u, is a point in between t and ci and" int" is a point in the open line segment of (s, t) and (ci, c1).

The asymptotics of the terms (2.3.1) - (2.3.4) are given in (2.10), (2.13), (2.17) and (2.18).

The term (Er)'. From the Taylor expansion (2.4) of f we find

j(t - ci.)3 f2(t) dt = At -L f (c1)f'(cj) + o(n-5 ).
A4 40

S(t _ C,)4 fl (t) dt = ANti -Lf2(c) + o(n-S)
A(-c ) terms a 80

where the o(n-5 ) terms are uniform in i. Substituting into (2.3.5)' we obtain
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(E),= F, [2f (cj)f'(c)r )(ci) + -Lf 2 (ci)r(4) (int) + o(n -6 )

and using (2.9) we have as n -- c,

(2n)5 (Er)" 'y- 0 [2f (t)f'(t)r(3 )(t) + lf2(t)r.4 )(t)] dt (2.23)

30 0 4 h5 (t)

The term (El)'. Using (2.5), (2.11), (2.14) and

f(t - c1)
3 f (t) dt At= - f'(C) + At? [ f"(intj1 ) -f"( nt so)], (2.24)

A, 80 768

we obtain

(E.)'= - i R3.°(CC,) f --L f(c)f,(c)+o(nC6) , .(C, C) At, -_ f (c)+o(n-
R3'(=c 5 .f 240 ' ' 

2 ( 8  614

where the o (n- 6) terms are uniform in i. It then follows by (2.9) that as n -- ,

f, f(t F2 23(t IR I
(2n)5 (El)'-* - h t

( t ) T 2 R3.0(t, t)+ R .d( t, .) d. (2.25)

The term E.. When the Taylor expansion (2.4) of f is substituted in (2.3.7), the dominant term

corresponds to f (c) and we obtain

E,4, [f2 (Ci) + 0(1)] X (2.26)
i=1

x {At (t _c)4 -LR4,0 R 3. + 4R22 - IR"3 + - R ° '4](u19.2c1-ut)dt (2.26.1)

_ __(S _C) 4R04( int)+ I (t- _C() 2 (S _ C.)2 R2 2( t ddsU *,A24~ )R 4 0 (m 24 4

(2.26.2)

-fr [!q C)3 (s-.c)R 3,1( int) +-(,._.C.) (S _ C,)3 R 13( int ds ds} (2.26.3)
AjA L 6 6 '
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where o(1) is uniform in i. Applying the mean value theorem, we find that the term (2.26.1) equals

At62.8241 [R4, 0 +RO4 -4R 3M -4R 1'3 +6R2.2 (int 1 ), (2.26.1)'

and the term (2.26.2) equals

At380.241 [3R 4.0 (int 2) + 3R °' 4 (int 3) + 10R2,2(int4) (2.26.2)'

In order to apply the mean value theorem in the terms of (2.26.3), the square Ai x Ai is split into its four

squares with half size over each of which (t - ci)(s - ci) has constant sign. We thus find

ff(t- Ci) 3 (s - ci)R 3,l( int )d ds =
Aj A

Ci C4 ti c 1i t, C 4
= f3.( int5) f f+R 3'"(int6)f f +R31(int 7)f f+R3,1(int) f f (t-ci)3(s-ci)dtds

4-1I L -1 A li-I ¢ Ci C,-i c.

-- At/6L R .(in5 R 3,(int6) + R .(int7) - R .(int8) (2.27)

where int i are points in Ai x Ai, and likewise for the other term. It then follows from (2.26), (2.27) and

(2.9) that as n - *,

(2n)E 2d f 2() 1 [R40+ R.44R3.14R .3+6R212(t,
o h5(t) 2.80.24

1 [3R . +3R 0 .4 + lOR 2l2 (t)
3.80.24

1 [R 3 1 -2R 3  (t, t)- [2R1 -2R . ,)

6.512 6-5121 t , 3. t]22t
f,(t) [R4(t t)+4R3 ' (t t)+ I R2 2t, t) dt. (2.28)60 - h 5(t)3

Finally, adding (2.10), (2.13), (2.17), (2.18), (2.23), (2.25) and (2.28), we obtain (1.17) and (1.18).

The final compact expression in (1. 18) follows by straightforward calculation. 0
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